Муниципальное образование – городской округ город Рязань Рязанской-области Муниципальное автономное общеобразовательное учреждение города Рязани «Лицей №4»

«PACCMOTPEHO» на заседании методического объединения по методической работе учителей-предметников Протокол № 4 от 10 июня 2020 г.

«СОГЛАСОВАНО» заместитель директор ЯстоваЛ.В. Попова

Протокол № 4 от 15 июня 2020 года

«УТВЕРЖДАЮ» оской окрудиректор МАОУ МАОУ Приказ № 102-Д
«Лицей № от 26.06.2020 г

РАБОЧАЯ ПРОГРАММА по ГЕОМЕТРИИ

Уровень образования: основное общее образование

8A

учитель:Терпугова И.А., учитель высшей квалификационной категории

учитель:Румянцева Н.С., учитель высшей квалификационной категории

Количество часов: 68 (2 часа в неделю)

Пояснительная записка

Программа разработана на основе:

- 1. Федерального государственного образовательного стандарта основного общего образования (утв. приказом Министерства образования и науки РФ от 17 декабря 2010 г. N 1897 "Об утверждении федерального государственного образовательного стандарта основного общего образования" С изменениями и дополнениями от: 29 декабря 2014 г., 31 декабря 2015 г.);
- 1. Федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ основного общего, среднего общего образования (приказ Минобрнауки № 253 от 31 марта 2014 года с изменениями и дополнениями);
- 2. Федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ основного общего, среднего общего образования (приказ Минобрнауки № 253 от 31 марта 2014 года с изменениями и дополнениями);
- 3. Авторской программы Т.А.Бурмистровой по УМК «Геометрия 7-9» под редакцией А. В. Погорелова (М.:: Просвещение, 2017-2018 год);
 - 4. Основной образовательной программы основного общего образования МАОУ «Лицей №4» г. Рязани.
 - Учебного плана МАОУ г. Рязани «Лицей № 4» для 8 классов на 2020 2021 учебный год.

В 8 классе на изучение курса геометрии отводится 2 часа в неделю, всего 68 часов. В ходе изучения проводятся самостоятельные работы, тестовые проверки, 6 контрольных работ, итоговый тест за курс геометрии 8 класса. Программа реализует право учителя расширять, углублять, изменять, формировать содержание обучения, определять последовательность изучения материала, распределять учебные часы по разделам, темам уроков в соответствии с поставленными целями и задачами. При необходимости в течении учебного года учитель может вносить в учебную программу коррективы: изменять последовательность уроков внутри темы, количество часов, переносить сроки проведения контрольных работ.

Геометрия- один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Цели

Изучение геометрии на ступени основного общего образования направлено на достижение следующих целей:

- **овладение системой математических знаний и умений**, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых

человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Содержание

1. Геометрические построения(7ч)

Окружность. Касательная к окружности и ее свойства. Окружность, описанная около треугольника. Окружность, вписанная в треугольник. Свойства серединного перпендикуляра к отрезку. Основные задачи на построение с помощью циркуля и линейки.

Основная цель — систематизировать и расширить знания учащихся о свойствах окружности; сформировать умение решать простейшие задачи на построение с помощью циркуля и линейки.

В данной теме отрабатываются вопросы равенства радиусов одной окружности, перпендикулярности касательной и радиуса, проведенного в точку касания, положения центров описанной около треугольника и вписанной в треугольник окружностей.

Значительное внимание в данной теме уделяется формированию практических навыков построений с помощью циркуля и линейки при решении простейших задач. Формируются умения, связанные с выполнением основных построений, необходимых для решения комбинированных задач. При этом задача считается решенной, если указана последовательность выполняемых операций и доказано, что получаемая таким образом фигура удовлетворяет условию задачи.

2. Четырехугольники (19 часов)

Определение четырехугольника. Параллелограмм, его признаки и свойства. Прямоугольник, ромб, квадрат и их свойства.

Теорема Фалеса. Средняя линия треугольника.

Трапеция. Средняя линия трапеции. Пропорциональные отрезки

Основная цель — дать учащимся систематизированные сведения о четырехугольниках и их свойствах.

Доказательства большинства теорем данного раздела проводятся с опорой на признаки равенства треугольников, которые используются и при решении задач в совокупности с применением новых теоретических фактов. Поэтому изучение темы можно организовать как процесс обобщения и систематизации знаний учащихся о свойствах треугольников, осуществив перенос усвоенных методов на новый объект изучения.

В теоретической части раздела рассматриваются в основном свойства изучаемых четырехугольников, необходимые для дальнейшего построения теории. Однако для решения задач можно использовать и факты, вынесенные в задачи.

Основное внимание при изучении темы следует направить на решения задач, в ходе которых отрабатываются практические умения применять свойства и признаки параллелограмма и его частных видов, необходимые для распознавания конкретных видов четырехугольников и вычисления их элементов.

Рассматриваемая в теме теорема Фалеса (теорема о пропорциональных отрезках) играет вспомогательную роль в построении курса. Воспроизведения ее доказательства необязательно требовать от учащихся. Примером применения теоремы Фалеса является доказательство теоремы о средней линии треугольника. Теорема о пропорциональных отрезках используется при изучении следующей темы — в доказательстве теоремы о косинусе угла прямоугольного треугольника.

3. Теорема Пифагора (13 часов)

Синус, косинус и тангенс острого угла прямоугольного треугольника. Теорема Пифагора. Расстояние между двумя точками на координатной плоскости. Неравенство треугольника. Перпендикуляр и наклонная к прямой. Соотношение между сторонами и углами в прямоугольном треугольнике. Значение тригонометрических функций для углов $30^{\circ}, 45^{\circ}, 60^{\circ}$.

Основная цель – сформировать аппарат решения прямоугольных треугольников, необходимый для вычисления элементов геометрических фигур на плоскости и в пространстве.

Изучение теоремы Пифагора позволяет существенно расширить круг геометрических задач, решаемых школьниками, давая им в руки вместе с признаками равенства треугольников достаточно мощный аппарат решения задач.

В ходе решения задач учащиеся усваивают основные алгоритмы решения прямоугольных треугольников, при проведении практических вычислений учатся находить с помощью таблиц или калькуляторов значения синуса, косинуса и тангенса угла, а в ряде задач использовать значения синуса, косинуса и тангенса углов в 30° , 45° , 60° .

Соответствующие умения являются опорными для решения вычислительных задач и доказательств ряда теорем в курсе планиметрии и стереометрии. Кроме того, они используются и в курсе физики.

В конце темы учащиеся знакомятся с теоремой о неравенстве треугольника. Тем самым пополняются знания учащихся о свойствах расстояний между точками. Следует заметить, что наиболее важным с практической точки зрения является случай, когда данные точки не лежат на одной прямой, т.е. свойство сторон треугольника. Его полезно закрепить на ряде примеров. В то же время воспроизведения доказательства теоремы можно в обязательном порядке от учащихся не требовать.

Материал темы следует дополнить изучением формулы расстояния между точками на координатной прямой.

4. Декартовы координаты на плоскости (10 часов)

Прямоугольная система координат на плоскости. Координаты середины отрезка. Расстояние между точками. Уравнение окружности и прямой. Координаты точки пересечения прямых. График линейной функции. Синус, косинус и тангенс углов от 0 до 180 градусов.

Основная цель - ввести в арсенал знаний учащихся сведения о координатах, необходимые для применения координатного метода исследования геометрических объектов.

Метод координат позволяет многие геометрические задачи перевести на язык алгебраических формул и уравнений.

Важным этапом применения этого метода является выбор осей координат. В каждом конкретном случае оси координат целесообразно распологать относительно рассматриваемых фигур так, чтобы соответствующие уравнения были как можно более простыми.

5. Движение (7 часов)

Движение и его свойства. Симметрия относительно точки и прямой. Поворот. Параллельный перенос и его свойства. Понятие о равенстве фигур.

Основная цель — познакомить учащихся с примерами геометрических преобразований.

Поскольку в дальнейшем движения не применяются в качестве аппарата для решения задач и изложения теории, можно рекомендовать изучение материала в ознакомительном порядке, т.е. не требовать от учащихся воспроизведения доказательств. Однако основные понятия — симметрия относительно точки и прямой, параллельный перенос — учащиеся должны усвоить на уровне практических применений.

6. Векторы (8 часов)

Вектор. Абсолютная величина и направление вектора. Координаты вектора. Равенство векторов. Координаты вектора. Сложение векторов и его свойства. Умножение вектора на число. (Коллинеарные векторы). Скалярное произведение векторов. Угол между векторами. (Проекция на ось. Разложение вектора по координатным осям).

Основная цель — познакомить учащихся с элементами векторной алгебры и их применением для решения геометрических задач, сформировать умение производить операции над векторами.

Основное внимание следует уделить формированию практических умений учащихся, связанных с вычислением координат вектора, его абсолютной величины, выполнением сложения и вычитания векторов, умножения вектора на число. Причем наряду с операциями над векторами в координатной форме следует уделить большое внимание операциям в геометрической форме. Действия над векторами в координатной и геометрической формах используются при параллельном изучении курса физики. Знания о векторных величинах и опыт учащихся, приобретенные на уроках физики, могут быть использованы для мотивированного введения на предметной основе ряда основных понятий темы.

7. Повторение. Решение задач (6 часов)

Требования к уровню обучащающихся 8 класса В результате изучения геометрии обучающиеся должны уметь:

- пользоваться геометрическим языком для описания предметов окружающего мира;
 - распознавать геометрические фигуры, различать их взаимное расположение;
- изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
 - в простейших случаях строить сечения и развертки пространственных тел;

- проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
- вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
- решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
- решать простейшие планиметрические задачи в пространстве; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
 - описания реальных ситуаций на языке геометрии;
 - расчетов, включающих простейшие тригонометрические формулы;
 - решения геометрических задач с использованием тригонометрии
- решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
- построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Календарно-тематическое планирование

№	Тема урока			
п/п		часов		
1-3	Окружность. Окружность, описанная около треугольника	3ч		
4-6	Касательная к окружности. Окружность, вписанная в треугольник.	3ч		
7	Контрольная работа №1			
8	Определение четырехугольника. Параллелограмм.	1ч		
9-10	Свойство диагоналей параллелограмма	2ч		
11-12	Свойство противолежащих сторон и углов параллелограмма.	2ч		
13-14	Прямоугольник.	2ч		
15	Ромб.	2ч		
16	Квадрат.	1ч		
17	Контрольная работа №2	1ч		
18	Теорема Фалеса.	1ч		

19-20	Средняя линия треугольника.				
21-23	Трапеция.				
24-25	Теорема о пропорциональных отрезках.				
26	Контрольная работа №3				
27-30	Косинус угла. Теорема Пифагора. Египетский треугольник.	4ч			
31	Перпендикуляр и наклонная.				
32	Неравенство треугольника				
33-35	Соотношение между сторонами и углами в прямоугольном				
36	Треугольнике Основные тригонометрические тождества.				
37-38	Значения синуса, косинуса и тангенса некоторых углов.				
39	Контрольная работа №4				
40	Определение декартовых координат. Координаты середины отрезка.	1ч			
41	Расстояние между точками.				
42	Уравнение окружности.				
43	Уравнение прямой.	1ч			
44	Координаты точки пересечения прямых.	1ч			
45	Расположение прямой относительно системы координат.	1ч			
46-47	Угловой коэффициент в уравнении прямой. График линейной функции.	2ч			
48-49	Определение синуса, косинуса и тангенса любого угла от 0 до 180	2ч			
50	Преобразование фигур. Свойства движения.	1ч			

51	Поворот.	1ч			
52	Параллельный перенос и его свойства.	1ч			
53	Симметрия относительно точки.	1ч			
54-55	Симметрия относительно прямой.	2ч			
56	Контрольная работа №5	1ч			
Векторы (8ч)					
57	Абсолютная величина и направление вектора.	1ч			
58	Равенство векторов.	1ч			
59	Координаты вектора.	1ч			
60	Сложение векторов. Сложение сил.	1ч			
61	Умножение вектора на число.	1ч			
62-63	Скалярное произведение векторов.	2ч			
64	Контрольная работа №6	1ч			
65-70	Итоговое повторение	4ч			
	Итого:	68 ч			